翻訳と辞書
Words near each other
・ Complex structured finance transactions
・ Complex system
・ Complex systems
・ Complex Systems (journal)
・ Complex systems biology
・ Complex text layout
・ Complex torus
・ Complex training
・ Complex variables
・ Complex vector bundle
・ Complex vertebral malformation
・ Complex volcano
・ Complex Volume 1
・ Complex wavelet transform
・ Complex-analytic variety
Complex-oriented cohomology theory
・ Complex-toothed flying squirrel
・ Complex-valued function
・ Complexa
・ Complexe Al Amal
・ Complexe de Kawani
・ Complexe Desjardins
・ Complexe Guy-Favreau
・ Complexe Les Ailes
・ Complexe Maisonneuve
・ Complexe OCP
・ Complexe sonore
・ Complexe sportif Claude-Robillard
・ Complexe Sportif d'El Alia
・ Complexe Sportif René Tys


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Complex-oriented cohomology theory : ウィキペディア英語版
Complex-oriented cohomology theory
In algebraic topology, a complex-orientable cohomology theory is a multiplicative cohomology theory ''E'' such that the restriction map E^2(\mathbb\mathbf^\infty) \to E^2(\mathbb\mathbf^1) is surjective. An element of E^2(\mathbb\mathbf^\infty) that restricts to the canonical generator of the reduced theory \widetilde^2(\mathbb\mathbf^1) is called a complex orientation. The notion is central to Quillen's work relating cohomology to formal group laws.
If \pi_3 E = \pi_5 E = \cdots, then ''E'' is complex-orientable.
Examples:
*An ordinary cohomology with any coefficient ring ''R'' is complex orientable, as \operatorname^2(\mathbb\mathbf^\infty; R) \simeq \operatorname^2(\mathbb\mathbf^1;R).
*A complex ''K''-theory, denoted by ''K'', is complex-orientable, as \pi_3 K = \pi_5 K = \cdots = 0 (Bott periodicity theorem)
*Complex cobordism, whose spectrum is denoted by MU, is complex-orientable.
A complex orientation, call it ''t'', gives rise to a formal group law as follows: let ''m'' be the multiplication
:\mathbb\mathbf^\infty \times \mathbb\mathbf^\infty \to \mathbb\mathbf^\infty, ((), ()) \mapsto ()
where () denotes a line passing through ''x'' in the underlying vector space \mathbb() of \mathbb\mathbf^\infty. Viewing
:E^
*(\mathbb\mathbf^\infty) = \varprojlim E^
*(\mathbb\mathbf^n) = \varprojlim R()/(t^) = R, \quad R =\pi_
* E = \oplus \pi_ E,
let f = m^
*(t) be the pullback of ''t'' along ''m''. It lives in
:E^
*(\mathbb\mathbf^\infty \times \mathbb\mathbf^\infty) = \varprojlim E^
*(\mathbb\mathbf^n \times \mathbb\mathbf^m) = \varprojlim R()/(x^,y^) = R
and one can show it is a formal group law (e.g., satisfies associativity).
== See also ==

*Chromatic homotopy theory

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Complex-oriented cohomology theory」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.